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0., Summary.

A number of recent publications have dealt with problems
of analyzing the performance of multi-component systems and
evaluating their reliability. For example, a comprehensive
theory of two-terminal networks was presented in [1] by Moore
and Shannon who, zinong other results, have developed methods
for obtaining highly reliable systems using components of
low reliability; some of their procedures are credited to

earlier work by von Neumann [2)., A discussion of complex

systems interpreted as Boolean functions may be foand in
the paper [3] by Mine.

The present study deals with general classes of systemé
which contain two=~terminal networks and most other kinds of
systemns considered previously as special cases, and investi=-
gates their combinatorial properties and their reliabiliﬁy0

These classes consist, with several variants, of systems

such that the more components perform the greater the probability

that the system performs. For such systems it 1is shown ﬁhatb'
if each component has reliability p and the reliability of the
system is denoted by hi(p), then under mild additional assump=-
tions h{p) is an S-shaped function, i.e. its graph has the
shape indicated in Fig. 3.72.4.1. =Zome of the consequences are
these: there exists a critical value of p such that above that
value the reliability of the system is greater than the |
reliability of a single component and below that value it is
smaller; for p small the system hes a reliability comparable

to that of a series system; and for p large to that of a
parallel system; by repeatedly iterating the system, i.e. by

using replicas of the system instead of single components, one




obtains systems with reliability arbitrarily close to 1 if

one starts with component reliability above the critical value,
but with reliability arbitrarily close to O if one starts below

that critical value.
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1. Introduction

1.1. When a very complex device is constructed,; consisting of

a large number of components, it is often impossible to be quite

sure that it will perform the task for which it was intended.
Failures of components due to causes which are hard to anticipate and
practically impossible to prevent may lead to failure of the ent:ire
structure, In such situations, the best one may strive for in
designing the structure is to attain a high probability that it

will perform its task. It has become customiry to refer to the

probability that a structure will perform the task for which it

was designed as the reliability of that structure. A simplifying
(and possibly not quite realistic) assumption is implied in this
definition of reliability: it is assumed that a structure can
only either perform or fail. To emphasize this asswaption, we

shall somatimes use the term dichotomic reliability for the

probabilisy that a structure will perform its task. It is possible
to introduce and study a more general concept of reliability which
accounts also for the possibility of partial performance. The

present study, however, will be limited to dichotomic reliability.

1.2. A similar situation arises when, instead of a complex structure,
one considers single mass-produced components. There again one can
hardly expect to be sure that all components will perform and can
only aim at a high probability that a component, when called upon,
will perform. As before, the probability that a component will
perform the function for which it is intended will be called the

{dichotomic) reliability of that component.
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1. 5; It should be pointed out that the time element does not
expllcitly enter into our definition of dichotomic relidbilityo
It nay, enter in what is mednt by “performing” of 'failing'
Y- when a structure is Sdld to perfbrm if 1t functions in a
certain manner “for at leust 400 hours, and - to fail if it breaks
‘dOWn before thdt tlme° But there also are practlcal situations
..iwhere a structure 1s considered as ncrforming when 1t is.in

.worklng order. for instantuneous use, “"and ‘not necessarily for

. any- 1ength of . time° Our dicnotomic reliubillty 1nc1udes the .
tJme~dependent rellability as.a special- cases

. é
)

'i 47 One of the main puxposes_of a mathem:tical theory of

'.:reliabillty is. to develop m ans by. which one “can evaluate the

. reliubility-of a structure when the reliabillties of ‘its com- -
‘ponents ure known.' Thé present study w1ll be concerned with

thlo kind of mathemdtical development° It Wlll be necessary
.-;for thls pulptse to rephrase our intuitlve c)ncepts of structure9~
;oomponent, rellability etc° 1n more formal language, ‘to ren:

state cdrefully our - assumptions9 and to introduce an appro-

~

fpriate mathematlcal apparatus0
20 Formal description'of e:structure T L e -

Zelul In order ‘to study the reldtionshlps between the reliabillties‘t
1 of the components of ‘A - structure and the rellabillty of that
ﬁfstructure, one has to know how performance or fallure of the

vsr:ous components affects performance or’ fuilure of the structureo-

B For thls purpose we - shall describe the stute of any device, single..;j




,componeht or complex structure by a numer1ca1 value according

to the code ’ i ' .
Sperforms® 2;;_.? 1

(2.1.1) ‘ R

*fajls® <> 07

If a stricture consists,of n components it will be called a

structure of order nol'The scate of all componen£5‘of such a

'structure w111 be described by the n-tuple of variables (a vector

with n ”oordlnates)

(2.1.2) '(xigng,oygxh) =X
Wﬂér;f'xi = l. means mi-ch compoﬁeot performs' and xi =0 ‘means
'f5ki-th'compoheot.failsﬁ All oossible states of the n—tuple X
“are therefore glven by the 2?'.vectors (0-0”°..90), (1 09“090)9
(Ovli,o.,w()),,‘,c° (l 1,.,.,1)9~ thac is.by all the.vertlces of an
'n-dimenslonalionlt cube° ‘Some of these Zn vectors will meke our
.’structure perform9 and others m111 make it fail, so that the state

of the structure may be written as a functloﬁ of x
. (?olWS)' ¢(x19x29°=09xn) = ¢

'fwhlch assumes the value 1 for those vectors X Wthh make the

; structure perform and the value 0 for those which make it fail,

. _The.fupctlon .¢(5) will be called the structure-function or, in

'short the strdctureo _
. By analogy with terms used-in the theory of circuits, any

" vector ' x for which @(x) = 1 will be called a E§ for the

ﬁ"m
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structure ¢ , and any vector x for which ¢(x) = 0 a cut for
that structure.

The number of components performing when the state of all
components is given by a vector x 1is clearly given by the function
of x

-
S(x) B'I—-i'xi
which will be called the size of Xx.

The following abbreviations and definitions will be useful:

0 = (0,0,..,.,0) (state in which all components fail)
1= (1,1,...,1) (state in which all components perform)
x'=1-~x

=

>y or {xlpxzﬂ.oegxn) > (ylgyzgo.ggyn) when x, >y,

for 1 = 1,2,...4n

H

>y when Xy 2 Yy for i = 1,2,...,n

and Xy > ¥y for at least one j o

2.2, Examples of structures.

2.2.1. Parallel Components.
A structure is suid to consist of n components in parallel if
it is so designed that it fails if and only if all components fail,

This structure is described by
¢(x19x2”°°°9xn) - l had (l-xl)(lbxz)QOO(l-xrl) = Max (xlpeoogxn)
and its only cut is (0,0;,...,0) =0

2.2,2, Components in series,
A structure which performs if and only if all its components

perform is said to contain its components in series. It is described




d)(xl,,xz,.oo,xn) - xlc,.xzm..,xn = min (x.l,xz,,..,xn) .

and the only path for ¢ is 1 .

2.2.3, %k out of n¥ structures.

Let
1 if S(x) >k

d(x) =
0 if 8(x) <k

A}

where k 1is an integer, 0 <k < n ., This structure performs
when at least k of its n components perform, and tails other-
wise. We shall call it a ¥k out of n% structure; Clearly all
x such that S(x) > k are paths, all others cuts, For k =1
the k out of n structure reduces to the structure with
parallel components, and for k = n to the structure with

components in series.

2.3, The dual structure.

2.3.1. For a given structure ¢(x), we define the structure
D
O (x) =1 =01 -x)=1-¢(x)

and call it the structure dual to ¢ . One verifies immediately
that if a vector x 1is a path for @ then x' is a cut for

¢° and vice versa, and that (@D)b' ¢ .

2.3.2, As an exauple consider the k out of n structure of

202,33, The dual structure is

1 if S(x) 2n-k+1

9° (x) =
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so that for the -k- out‘of n. structu?e'the dual is the

n-k+ 1 out of n structure. In parbiculaf for k =1

we find that the structure dual to that with parallel components is
the series structure, and for k = n we obtain the converse

statement.

. 2.4, Path-numbers and cut-numbers.

A given structure ¢ may have paths and cuts of sizes

.ranging from O to n. _We’define the path-numbers for a

given structure as

(2.4.1) Aj = number of paths for ¢ of size j, j = 03l,.0., N &

and the cut-numbers for ¢ as

(2?4°2) A? = number of cuts for O of size j, J = Oyl ecvoyn o
Let rxj be the set of all vectors of size j

(2.4.3) Yy = ig S(x) = 3f .

Then clearly

(2.4.4) Ay = 5 0(x) I (1 - d(x)]

and since-'73 contains éxactly.,(gf vectors and each of them is

-either a path or a cut we have

" (2.4.5 A, o+ AT m My
(24,50 Ay v &7 = (3)

Setting_
D ' b L
Aj = number of paths for ¢  of size jJ

. S s,
A%ﬁ = number of cuts for § of size j




s

we obtain

(2.4.6) . AD - a* FUR

- A °
J n-j * J n-j .
2.5, Length and width of a sfrucﬁure.

By analogy with terms used in the theory of circuits we

‘define for a structure ¢

(2.5.1) L~ length of ¢ = smallest 3j such that Aj >0

(2.5.2) w = width of ¢ = smallest k such that Aimk >0 .

Iﬁtuitively'speaking, / is the smallest number of components
such that, if these components perfofm, the structure performs even
if all other n -[ conponents fail. Similarly w is the
smallest number éf components such that if they fail the structure
fails9 even if all remaining n-w components perform., For
example, in a k out of n sﬁructure [ =k, W= n-k+1 o

' Aéqordiﬁg to (2.5.1) we have _A3.= 0] ijr i< AZm 1, hence
.”By (2°4°5i,'A§ = (g) > p for: 'j < ! - 1. But according to
(2,5.2) :A:;(w;l)-é 0, hénpe n-(w-1) > {, éndjwe obtain the

‘:ineguality
(2.5.3)  ddwgne1 o
2.6, Combination of structures.

Up?to now wé'haVe always considered one structure of given
order n. We shall now consider structures of different orders
and in particular define an operation by which structures of
a higher order can be obtained from structures of a lower order.

We éhail say that the structure, of order n+l 1is a linear

combination, or; in short,; & combination of the structures A\ and
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g of order n , when the identity holds

(2.6.1) Q(xlgxz,...gxn,xn+l) - xn+1h(x1,x2,.°a,xh) +
%7 (l ad xn"‘l) H(xlpngaoogxn) o
Clearly if N and u are structures of order n then the
ripht side of (2,6.1) is a structure of order n+l. Conversely,
every structure ¢ or order n+l can be represented as a

coitbination of two structures of order n; i.e. can be written |

in the form (2,6,1), since one always has the identity

{2.6,2) ¢(xl,°=,,xn9xn+1) = X1 ¢(xlg.e=ﬁxngl)+(l-xh+l)¢(xlgcoosxn90\

This representation of a structure as a combination of structures of

lower order can be carried further step by step, so that

Blxgpo0eoX ooXy_y9%,) = 2 0l poennXy _ooXp 4,1) *

-

(1=x 000 s eoerXy,_350) = Xl Blxp000y% 551,1) *

-

(1«xn*l)®(xlgag,5xn~23091)] + (l~xh)[xn“1¢(x19°“,ﬁxn_zglso) -

+ (l"xnol)@(x19°°°”xn~2”0”0)] XXy g Ok seee X _551s1) +

&

xn(l“}‘rn_‘:g-)(b(}clgonagxnﬂzgop-t) it ’], ’y‘}.’l)acl}@].(b(x:“ﬁ“’“”xnﬂzi'lso) +

-~

(-3 ) (1=x_5) ®x),0000%, 5,0,0 )

"This procedure will terminate when one has reached structures of
order 0, 1l.e. constants which are 0 or 1, and then it yields

the representation which can be directly verified

il i




«Qe
(29603). ¢(x19x29°°cpxn) ceg

1‘:

xl x2 XX xn (1"}{1) (l“XZ)

ol

where the sum is extended over all vectors y of order n o

2;7° Semi-coherent and coherent structures
2.7.1. Definitions.

Most structures occuring in practice are so designed that if
a structure performs for a state x of its components then it
performs for every state y > X , i.e. whenever some components
which have value O (do not perform) in x are given value 1
{are made to perform)., This leads us to the following definitions,

A structure ¢ is semi-coherent when

(2.7.1.1)  O(y) > ¢(x) for all y>x o

A structure @ is coherent if it satisfies (2,7.1.1) and

B

(2.7.1.2)  ¢(0) =0, (L) ~ 1 .

Thus a coherent structure is semi-~coherent, with the additional
property that it fails when all its components fail and performs
when all components perform,

For given order n, there are only two structures which are
semi-coherent but not coherent: the structure ¢(x) = O which
fails for every state of its components, and the structure
¢(§) =z L which performs for every state of its components. To
see this one only has to note that 0 < x <1 for every x ,

hence by (2.7.1.1)

0(Q) < O(x) < O

Voo 1-y N
20 oe (l“”%) n¢(Y19 st °°°yn)
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and if ¢  is not coherent then either ¢(0) = 1 hence
¢x) =1 or O(1) =0 and Olx) =0 .
If ¢ is semi-coherent (coherent) then ¢D is semi-coherent

(coherent),

2.7.2, Theoren.
A structure ¢ of order n+l is semi-coherent if and only if
it can be represented as a linear coubination of the form (2.6.1)

a) b)

with A and semi-coherent and such that k(xlgroosxn) 2

u(xlﬂoonpxn) for all (xy,...:%;) o It is coherent if and only
if, in addition to a) b) , either cl)

k(xlgoo.,xn)“u(xlgooogxn)
for all (xlgooevxn) and N-p  1s a coherent structure, or

ea) A > u for some (xl”u,ogxn) .

Proof:

If ¢ is semi-coherent then (206;2).13 a representation of
¢ as a linear combination of k(xlgo..vxn) - ¢(xlﬁoo.sxn91) >
> ®(xlsoAn~anO)'= u(ilvo.ogxn) ; hence A and p are semi-
coherent and A2 W o If. ® is coherent then either
h(xlaocugxny = Py 000X 1) = O(Xy50005%50) = plxgp0e0,x)

for all (%j,0..5%,), and Mlgeoosl) = pll,c0e,d) = $(Ly000,1,1) = X,

MOpeeo,0) = u(0,.0.,0) = $(0,...,0,0) = 0 and A and p are

: % d E? %
coherent; or there is an (xi » eossXy) such that k(xigoaogx;) >

> lll\_vxl;)ouo '-xn) o

“If ¢ can be written

¢(xl?°‘°9anxn+l) = xn+ik(xlson°9xn) + (1mxn+1)u(xlgooogxn) -
- xn+1[7\-(x190“9xn) hd ”-(xld,)caogxrl)] +

+ u‘xlgooc(xn)




)l
with A and . semi-coherent then
FARS (D(Ylaw°93-’nsyn+l) = ¢(x19°°"}%”xn+l) b

= (yn"’lg:(rl*:?.) [h(ylgocclgyn) = u(ylgooe»yn)] +

+ Xn+:JL[My1 ”o,,yn)ux(xj_,,,o.,gxn)] +* (1»xn+1)[u(yl,,ou,,yn)nu(xls,ooo:gill

e @)

Assume Yy 2 X 50009V 2 Xp41 © £ and b) are satisfied then

either :Xh+i = 0 and A"’ Yn,‘_-i‘{?\.(yl;;au.egyn) & u(}'].gooogyn)] <

t lplyysocesyyi = u(xlfeoogxn)] 20, or 1 =%, Sy *1 and

A = hﬁy.gouagyn) = k(XIQOuQ,xn) > 0, hence ¢ is semi-coherent,

If in addition ©1) holds then tD(xl,,o”axn,,;%ﬂh) = Mxlgow,xn)

for all Xyyee.sXp, Xn,q and ® is coherent., If a) it ) 4nd ¢2)

n

. . ¢ 73 . e b
hold then there is a vector Xy poocpXy such that 1 = h(xlsooopxn) >

u(xfgovogxi) = Q0 , hence ®(1,...,2,1) =1, ¢{(0500.,0,0) = 0 and

$ 1is coherent.

2.7.3. The preceding theorem suggests the following constructive
procedure for obtaining all semi~-coherent structures.

Let Qll‘ for n=l1;2,...; denote the class of structures

of order n  defined as follows.

%%, consists of the three structures of order one:
Bo(xa) such that 50(0) - Bofl) = 0

By (x,) such that B, (0) = 0,8y (1)

]
[

Bzﬁxi} such that BZ(O) » Bz(l) x

ot
°
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In concrete terms, these are one-component structures such that
B, never performs (circuit with one contact, grounded), By
performs if and only if the component performs (circuit with
one operative contact), Bz always performs (circuit with one
contact, shorted);

We define 4&2 as the class of all structures of order 2

of the form
Gl oxp) = x02y) + (Lexg)ulx;)

where A, Ut Qzﬂ and k(xl) > u(zﬁ) for X = 0,1 .

e

. o = . . 7
Having cefined an we define recursively 2 as the

n+l
class of all s:ructures of order n+l of the form
@’xlgoooganxn+1) TR MK peeesx, ) # (lwxhlﬁ(xlgooogxn)

. /.
where N, p € 5; and Mxlgo eﬁxn) = u(xlﬁgu.gxn) for all
ixu?uaoﬁxn) o

C]Te‘dr‘ly gi C (Zz C ~ocC gn < gn’{'l ~ ase6 g anc from

2,7.2 it follows that Qal is exactly the e¢lass of all semi-coherent

structures of order n.

“.7,4. 4n inequality for pathe-numbers.,

Let & be a senri-coherent structure of order n and
AosAysooeshy  I5s pulbe-numbers. Then
(2.7.4.1) (3~1) Aj+1 2 (n“j)Aj for J=0s;1l4.0049my

or =squivalently,

: A Aoy
(8.7.4.2) —+ g =& < 31
3’ jo1!

B




Proof: for twc consecutive integers 0 < jJ, j+1 < n we consider
the sets 7'9 7’4_1 of vectors of size j and j+l and, for
the purpose of this proof only, denote the elements of 7:] by
x and of ﬂzﬁﬂ. by y . For each specific x , we denote by
5(_}_{_) the set of all y such that y 2 x:

'é((zs)*“’ §x: xzx} s

Each set gl(g‘c) containg (n-j) different y's. Since for each
y there are (j+l1) different x%'s such that y > x , the
collection of all elements of all sets y (x) as x ranges

through Tj forms (j+1) renlicas of ?Aj-l-l o Therefore

> = O(y) = (3+1) S Oly) = (j+1) A,
X E @’jx 87(5) = Yy E 73‘-@1 L j+1

and since

> > O(x) = > > (x) = > G(x)(n-j)=(n=j) A
xeqy x ¢4 ‘Y‘"zc.?’fj xel(z)(p'}s x50 inegiminedlty

we obtain (2.7.4.1).

2.7.5., Inequality (2.7.4.1) points to the fact that the requiremens
of a structure being semi-coherent imposes considerable restrictions
on the path-nunabers Ajo Several observations are worth making in

this connection,

2.7.5.1. Inequality (2.7.4.1l) is necessary but not sufficient for
a structure %eing semi-coherent, as is shown by the following

example., The structure of order 3




$(0,0,0) =0 , ©(0,0,1) =1 , $(0,1,0) =1
#(0,1,1) =1, §(1,0,0) =0 , ${1,0,1) =1
$(1,1,0) =0 , (1,1,1) =1

has the paths

of size ©O: none

of size 1: (0,0,1) , (0,1,0)
of size 2: (0,1,1) , (1,0,1)
of size 3: (1,1,1)

hence its path=-numbers are

A =0, A =2, A, =2

o 1 2 » Ag = 1

and (2.7.4.1) is fulfilled. But ¢ is not semi-coherent since

e.go (1,1,0) > (0,1,0) and $(1,1,0) = 0<1 = #(0,1,0) ,

2.705,2, If in the sequence of path-numbers A A A of a

[o it Iy ¢
semi-coherent structure one has Aj = 0 then A:i. = O for all
i<J, and if one has A = (}) then A, = (]} for all ixk .,

Both statements follow from (2.7.4.2) .

2.7.5.,3. For ¢ coherent, obviously Ao = 0, An = 1 . TFurthermore
for the length and width of § one has ZZ_ 1, w>1, and
inequality (2.5.3) becomes

(2,705,3) 2 < [4- wn+1l
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2.7.,6 Reduction of coherent structures.,

2.7.6,1 After a structure is designed, it may be possible
to simplify it by omitting components which turn out to be
inessential for its performance. To do this it would be
helpful to have criteria b& which one can tell whether a
given structure has such inessential components. A
criterium of this kind will be given in 2,7.6.4, but before
it can be stated we need the following definitions.

2.7.6.2 Definitions

A vector z is a .inimal path for the coherent structure ¢ (x),

when ¢ (z2) = 1 but for every x < z we have § (x) = O,
A component X5 is inessential or a dummy component when

¢ (xignolgxi-lv O’ xi"'l,...’:‘.rl) = ¢ (xiQOOQ»xi_lglgxi+lsoaogxn)

for all values of Xyvooes X5 30 Xyuqs soer Xpo Otherwise X3 is
an essential component.
A structure § is called irreducible if all its components
are essential,
2.7.6.3 Remarks.
One verifies easiiy that if x is a path for a coherent structure
then there is at least one minimal path z such that 2 £ x.
If a structure ¢ (xl, ceny xn) has a dummy component X5
then we have identically ¢ (X5 coes X512 X0 X410 oo xn) -
= 0 (X eees X Q6K 70 cees X)) = P (xypeeenXy_73X;4q00003%,)
so that the component X; can be omitted and the resulting structure
ﬂ’ with only n-~1 components is equivalent with the original struc-

ture ¢ .

A
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Let us now consider a structure @(xl,.+.;xn), and assunme
that all its minimal paths are 5(1)? g(z), covy g(k) 5
Each of these minimal paths is a vector
g(j) = (zl(j), zéj), Boo ég)).\ J=1, 2, «oop k,
with coordinates O or 1, We consider the vector defined by

(2.7.6.3) E? = (mﬂx zij), mgx zéj)s ooy mgx iéj)) =

- (* E3 J‘r"-)
zl.’ 22 ’ 0.0’ er. °
0
The meaning of this vector is this: if z; = 1 then the

coordinate x; assumes the value 1 for at least one~of the
minimal paths, that is the i-th component is required to perform
for at least one minimal path; if 5§ = 0 then the i-th
coordinate does not perform for any of the k minimal paths.

In particular, if gf = 1 then everyone of the n componénﬁs
of the structure mist perform for sons minimal path.

2¢7.6.4 Theorem.

Those coordinates of the vector gf ir (2,7.6.3) which have

the value -1 correspond to essential components, and those which
have the value 0 to dummy components. In particular, a
necessary and sufficient condition for a coherent structire being
irreducible is” g? =« 1.

Proof: without loss of generality we may consider the coordinate
é;o If z; = 1 then there is a minim:l path g(n) -

n

g(n’ = (1, zén), 3elely zén) )o Since it is minimal and
(n) (n) (n)

(o, Zo g cses z;n) < (1, Zos oees Zp ); we have

- (z(l‘},)z(z‘?).,., 28}, say, such that z]('n)= 1 hence

o (1, zénz o ties zén)) =1 and ¢ (O, zé?)..., z£n)) = 0,

and X3 is an essential component.
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If zi = 0, then X = O for all ninimal paths. Consider any
vector x = (xl,xz,...,xh); it is either a path or a cut. We shall
show that in either case (O,xz,..o, xn) - (l,xz,..,,xn), that
is Xy is a dunmy component.

(s) .

If x is a path then there exists a minimal path 2z

{s),(s)

= (21129 ""'21(18))' say, such that g_(s) <x and z

= (0,zés),...,zés)) S (0yx%p5e00,x)) £ (xl'XZ"‘°’xh) =

= x < (3,%5,.005%,), hence 0] (E(s)) =1<¢ (0y%55000yx,) <

<¢ (1,X55.00,% ) and 1 = 0] (Opxgpeeerx)) = o (1,%g50505%).
Now consider an x which is a cut. Then either x, = 0 or

X, = l. If x; = 0, hence x = (O,xz,.,.,xn) a cut, then

(l,xz,...,xn) must also be a cut; for if_(l,xz,...,xn) were a

path then the argument of the preceding paragranh applied to

this vector would yield 1 = ¢ (0,X5,.c0yx,) = P(lyxyyeee,x)

in contradiction with (O,xz,...,xn) being a cut. Hence if

x; = 0 then O (Oyxppeeayx ) = Pll,x5,000,x ) = 0. If x5 =1,

hence x = (l,xz,...;xn) a cut, then 0 =¢ (Lyxgseesnxy) 2

>0 (0,%5,..0,%,) and again $(0,Xg,0009%)) = O(Llyxp50005%) = O,

which completes the proof.

2.7.6.5 Remark.

Theorem 2.7.6.4 suggests the following procedure for simplifying a

coherent structure {: first one lists all minimal paths for §;

then one prepares a list of all those components which must

perform (have value 1) in at least one minimal path. If this

list contains all n components of § then this structure is

irreducible. If a component does not occur in this list then

that component is inessential and can be omitted.

2.8 Composition of structures.

In practical designing of structures it often happens that
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the design 1s prepared in stages, so that first a structure of
order m is gonceived; and then for some or all of its m
components one substitutes other wulti-component structures. This
is for example the case when in planning electric circuits selif-
contained packages of components called ®*moduls® are used as

Yeomponents? ol a circuit. The formal description of this process

¢f superimnpcsing structures is introduced by the following definition,

Let V %y b,gxn) be a structure of order n , and
(2 e s a st C
/ l(y:'°‘ Lbk}) structure of order ke
Wt - :
f al¥y %150Jo;yky+k£ a structure of order ko

%
o

\‘} n(Ykl.'.kz‘, Weio +kn-1+lz coo § yk1+kz+ O ’kn-l‘.kn'

a structure of order kn

T the strustnre
74
4 om0 o . ) e
l‘v\}“k‘ }rza ",yk *’1’;‘2‘5’\”- L+l b o~ Y‘\ \{* 9 Y/2900¢v7£nl
e

is called the composition of “Fys Fopeeoy ¢, inte Vv o

T 3 ‘-rE 9 ¥ J o wue . { "
. The oloclk Qf components (5$, E)KI) P xyk1+lgu,°93kl+k2) 5
etc., may overlap. Tn particular, all of them may consist of the
saime  m  components (yTguonsym)v so that the resulting structure
) (< N .
Y[-qj’(l'__ o »Bm)v k{)z‘.‘f_g‘ﬂwﬁym)zoovs sun(ylsm’osym)} - %(Yl'o‘wym)

is of order n.

ot
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Cne veriiies that if Y and 7D19°=,9 %’n are all semi-
coherent then }Sis semi~coherent, and if V, \flpouop ﬁPn are

coherent thendét, is coherent,

2.8.2. Combiration of structures, as defined in 2,6, is a special
case of composition, since (2.6.1) can be obtained by the composi-

tion of

R v = k4x190vhﬂxn) o W = u(xlgoqc,xn)

inte
2.8.2.1) Yiu vew) = uv + (l-u)w .

One can therefore; beginning with the structure V of order 3
given in (2.8.2.,1) which is coherent, and using semi-coherent A
an¢d u of increasing orders; obtain exactly the same family of
structures which can be obtained beginning with BOQBlQBZ *of

2.7.3 and procceding by successive combinations,

3., The reliability function.
3.1 . Defiinition of reliability function.

3.1.1, As indicated in section 1, one of the main aims of the

mathenatical theory of reliability is to evaluate the probability that

a given structure will perform. Having previously discussed formal
properties of structures, we shall now assume tha®t components of
a pgiven structure may perform or fail in a random manner and

derive voarious statements about the reliability of the structure,
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3.1.2, Let (@ be a structure of order n. We assume that its n
components are independent random variablies
}J i K:lez'-ueegxn) )

each with the same probability distribution

5.0.2.1) FriX; =3} =p;, Pr§X,~0Cf wlepwaq,

§E) = &Ky 00.,K )

i iso a randoem variable capable of the valves 1 and 0, We

now defina the reliability function of the structure @ as

(NI BRI h¢(p = Pr {’$l§) = '} - E[@(g)]‘g

and devote the remainder of this paper tc the study of reliability

fuactions.

3.2 General v roperties of reliability functions,

3.2.1., JFrom (¥ 1.2.1), {(3.1.2.2) and (2.4.)) follows immediately
, o -' i
{(3.2.1) h,D(p) - 3 A.pd(r ~ p)B73

‘ mj‘O j

Freom this i1t is clear that h¢f0) © 0 if and only if Ay = 0
and h¢(]) i if anq.only if An =1,

3.2,2. 3L the structure P of order wn+i 1is a combination of
structures *» and o o7 erder n , then by taking mathematical
expectations o1 both sides of {2.6.1) and making use of the

independence of X X?”buosx one obtains

1e nt.
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Ay

(3.202) hgip) = ph,ip) * (1 = pih (pi o

3.2,%3., We now consider structures obtained by composition 1n the

follewing manner, Let ¢(xﬁ9x,ﬁ°c:9xn) be & structure of order
oA ta

n ?r Vao¥opeaos¥ } @ structure of order m , and let

T om

- \' - ) . i : =
Y“”fzh"t'ym m*.“Ym+2“°” “f“‘m-“‘”"1 a=1 bael: Yinwl)mfZ°°° “Ynm

be indepecdent random variables all uith the same probabilicy

distribution

~r

O P Pe f1, 0} =1l-p=a.,

Then the struciure of ordsy na defined by

e \‘)(‘!41‘.“ "v."'k;"\{}(\:l‘i” .{‘." "’\P”"in'l“ﬁnw{‘l ¥

3 A) n oir hig f T |
PR ',X " IW Yp, g
3. 2.4, The reliability Ffunctions of mosi practical structures

have the following plausible qualitative properties

a) hi0) = Q¢ and h(i) = 2
b) h*{p) > 0 for O0<p <!
. ¢} hip) < p in some rneighborhcod of O

hip) > p in scme neighborhood of i

and there jis exactly one root of the equation

hi{p} = p in the open interval (0,1) .
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Necessary and sufficient conditions for ¢ to have h¢
with property a) were stated in 3.2,1., We shall also obtain
conditicns on a structure ¢ which are necessary and sufficient
in order that h¢ have property b) , or a more pracisely
defined propsrty c¢). Before doing this, however, some intuitive
comments on these properties may be in order,

Property b) tells that the reliability of the structure
increases as the component reliability p increases, and is
encounterad for practically all. structures,

When h{p) has property c¢) we will say that h{p) is
S-shaped, since its graph has then the general form indicated
in Fig. 3.,2.4.1. A formal theory of S-shaped functions will be
presented later; but already in this qualitative discussion
we may indicatc some consequences of h({p) being S~shaped.

1f hip) is S-shaped and equation h{(p) = p has the root
Q< 5 < 1 , then we have h(p) < p and the structure is less
reliable than any single component as long as p < ﬁ , and
similarly hip) > p and the structure is more reliable than
any single component when p > ﬁ ;

Furthermore, let ¢(x) be a structure with an S-shaped
reliability function h(p) , and let the sequence of iterated

compositions of ® be defined as the sequence of structures

o, = 0
:1)2 ¥ (b(‘,\i)l)
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According to 3.2.3. the correspondirg reliabllity functions are

h, {p) = hip)

by (p) hLﬁrip)]

t lg6;:-

<

LLet again hip) p . O0<p< Then it can bs scen oy in

argvmant indicated by Fipure 3.2:.4.2, that

he {p} > £?§p) > oo >y L} oeeees if p<op
hy{p) < hyip) < oes X hy(p) ——> if p >

ssic that by iterctad czompositions of (0 one can obtain st ires

vith reliabilities a3 close to 1 as desired if tle init.a
ceaponent reliakility 1s p > p , Lat tendinvg te 3 il p T
3.2,5, Example: ¥ ot off n struetare

It is easily se2n that the structire desciribed i1 2,200
has the reliability lunction

T n 2 Liped
(3.2.5,1) hip;k,n} —?,_,E pth=py

3

Fois nmy = 3 12kheos g 29 the roots of the equation

¥

)W}: {‘ l

{3.2.5.,2) WipgE i)+ p 0<p<i

may be read off from Table 3.2.5,




TABLE 3,2,5

Soluriens 1, . cf the eguation hipik,n}) = p for p £ {01} .
b2
“\\k 2 3 a 5 6 ; 8 9 10 B St
3 5500
4 23
5 W3 5C0
6 ;087 347 -
7 ;0588 256 500
g 04c 197 398
G 238 158 32z 500
G gac .29 268 42 :
020 .08 228 .36 5075
% OLe 322 187 3.4 137
B 31 360 172 5279 ,387 500
c 3 270 1852  .,246 343 448
ke FOLT 382 136,220 31 .403 ( S00
& Lo 85 122 199 282 353 456 :
.00¢ )50 i1 .18 0287 337 418,500
% 207 45 C 66 235 3.0 325,462 -
v .00¢ )4 082 ,id% 2185 ,288 285,428 500
20 0L 237 085 .14 L202 266 .33L . 398 465 :
Q)8 Q34 079 Sl .,188 247 309 372 436 500
, M3 032 073 22 L1775 230 289 349 ,409 470
1M 150 068 .24 161 217 272,328 .385 .44z 500
a0z NET 064 107 154 204 L2568 L,309 363 418 .473
S 204 325 D80 10 JAE5 T G193 242 292 343 395 .448
o,
L
¥,

Fpeiok.n
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This table was computed>from [4] by linear interpoldtibn» except
for the case k = 2 for which (3.2.5.2) was solved directly

and the solation rounded off to three places.

For large values of n , and np, n{l-p) both not small,
the central limit theorem makes it possible to replace (3.7.5.1)

by the approximate equality

hip:ky,n) = 1 - aé(u)

where Q’(u) is the area under the normal probability curve

from ‘ tc u and

u o (ke-np) / Vup(i-p) .

2.3, Theory of S=shaped functions.
2.3.1. Definitions,

3,3.1,%. We shall say that the funetion f(p) belongs to class jf

when it satisfies the following conditions

(1) f{p) is continuous and C< f(p) <1 for 0<p <1l and

f(p) 1is differentiable for O < p <1 |

(1i) the function

£ 1
optp) ~ ERhe |~y

is non=decreasing.
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3.3.1.2. We say that f(p) belongs'to classllr when it satisfies

(i) and
(iit) Uffp) is strictly increasing,
{1ii) £{0) =0 , f(1) =1 .

3.3.1.3., e say that £(p) belongs to class H}o when it belongs l

to }r and satisfies the conditien
(iv) Uf'p) assumes the value 1 in 0<p<1l . |

3,.3.2, Remarks.

Prom the definition of Cp follows

i 5% 1
{3,3.2.1} f = T-p'po; 7 . 1=0 o

E e

hence a function f € ag‘is strictly increasing for every p l
such that 0 < ¢plp) < o Q
Clearly Uf(p) = for exactly those p for which f(p) = p .
Since for f e £ the function Gf(p: assumes every value at
most once, it follows that ’HTO corsists of exactly those f ¢ 3?
for which the equation f(p) = p has a unique root in 0 < p < 1.
Let f ¢ Ey; and f(p*) = pﬂ , 0< p* < 1 , hence
Or p) <1 for p< p* ) of(p\ > i for p >‘p* : From (30302;1)
we see that f(p}) < p for p < p* o f(p) >p for p> p* ;
The funciicns of class ]?@ are therefore S~shared in the sense
of 3.2.4.
et now fe ¥ . If £(0)>0 then 0g(0) = +w , hence
opipl * *teo for O < p <1l and according te (3.3.2.1) f(p) =1

for 0<p <1 . If £(1) <1 then op(l) =0, hence oulp) = 0
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and f(p) =0 for 0<p<1l., A function f e Y therefore is
either identically O , or identically 1 , or it maps the closed
interval  [0;1] onfthe closed interval [0,1] . This mapping

need not be one-to-one, as shown by the example

0 for 0<ps<%
f(p) =
a(p-3)? for <p<l .
3.3.3. Theoremn,
fe

Let f,g € &T and at least one of f,g 4 neither identically

0 nor identically 1. Furthermore, let either

a) e
f(p) > g{p) for 0 < p <1l and at least one of f,gain l?
or

b) f{p) > glp) for O0<p<1l .
Then the function

(3.3.3.1) hip) = pf(p) + (1-p)g(p)

is in EE )

Proof: one verifies directly that h satisfies (i) and (iii) .
To prove (ii?), that is cﬁ(p) >0 for 0<p<1, we shall

prove the equivalent statement
(3.3.3.2) p(l=p) h? > h(l=h) for 0<p<1 ;
From (3.3.3.1) follows
p{l-p)h? = ppl{l~p)f? + (f-g)p(l-p)+(1-p)p(l-p)g’

h(1-h) = pf(1-£) + p(l-p)(£-g)? + (1-plgll-g) .
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Since f,g ¢ Y we nave p(l-p)f' > £(1-f) , p(1l-p)g* 2 g(l-g) ,
a)

and in case at least one of these inequalities is strict, and

b) we have

we huve 0 f - g <1 hence f-g > (f-g)z « In case
f-g > (f-g)2 for 0<p<1l, so that (3.3.3.2) holds in either

case.

3.3.4, Theoremn,
If f,g e 3?., then h(p) = flg(p)] ¢ jfr c

roof: properties (i) and (iii) for h are obvious, and (ii?)
follows from

op{p) = Gf[g(p)] & Ug(p)

3.4, Mean path and mean cut.
3,4.1. Let X = (X,ﬁngvoggxn) and  O(X) = @(xl“a\g,xn) have

the samemeziing as in 3.1.2, and let

S = S{X) =X, + Xy v (o0 + X

be the size of the random vector X , i.e, the number of
components which perform. Then S is a random variable with the
is_nomial distribution, ¢ a random varieble with the probability
dastribution Pr i O - l} ~ a(p) , Pr { 0 = O} = 1-h(p) . but
3 and ® are dependent randon variables. It is natural to

consider the conditional expecthations
E(S | ¢ = 1) = L(p)
En -S| 6 =0) =Wip)

and to call L(p) the mean path, W(p) the mean cut for the

structure ©®
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3.4,2, Theorem,
In order that the reliability function h of a structure
of order n 1is strictly increasing for O < p <1 it is

necessary and sufficient that
{(3s452a1) Li{p) + W(p) >n

This wonditicn is equivalent with
3.4.2.2) cov (S, ¢) >0 .

Proof: we shall prove somewhut more specifically that for any

fixed p, 0 < p <1, each of the conditions (3.4.2.1), (3.4.2,2)

ie necessary and sufficient to have hé(p) >0
‘riting h in short for h¢ we have from (3.2,1)
‘ n . n
h S S 5 Apd{1ep)?denp 5 A pd(1op)I] -
I 250 AP {1~p)""-np =5 A5 {1-p)"7d]
\ o el S
Sz ¥ 5 a.“T [ B{s §) - LE(S)E!(®) ]

-~ m cov (8, G))

which shows that (3.4.2.2) is ecuivalent with h® . p) > 0 ,

singcs
E’b!() 2 ;) 3 :_ j E_gr jul "
N .
n 9
. n- E(0S)
B07 g 0 4000 - S

and

n
; L ——— n- ]




we cbtain

(3.4.2.4}

. covi(d. .S
L ET;TITQ#(%TT

so that {3,4.2.1} and {3.,4.2.2) are equivalent.

3.4,3, Theorem
Let ©® be a structure of order n and hip) its
reliability function. 1In order that Uh(p) is strictly increasing

it is necessary and sufficient that
(3.4.3.1) Lip} « ¥W(p) >n + 1

and fhis condition is equivalent with

3.4.3.2) covi{s -0 , ) >0

¥
Procl: we have seen in 3.3.3, that oh(p) > 0 at a point p
0<p<l is equivalent with inecunality (3.3.3.2). From
J Yy

13.4.7.3) follous

p{l-p)h?ip) = B(8Q) - E(SIE(Q) = cov(8.B)
and since

iip)L1 ~ hip)] = var(})
ine4u31ityﬁ3°‘;5;2)is equivalert with

covi{S ~ O, @) cov({S,0) - var() >0 .,

From (3.4,2.4) foliows

() e ey s S0V(S = O
Lip) Wip) = n + 1 + h(§§ T=h(p)

which shows that (3.4.3.1) and (3.4.3.2) are equivalent.,

e,
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3.5, Structures coherent in probability.
3.5.1. Let ® and S again have the same meaning as in 3.4,

We shall say that a structure ¢ of order n is coherent in

probability when
(a) Pr $0 =1 |8 =kf <Pr §O=215nmk+ 1} for knOl,.c.,nel,
(b) Prf®=;lS=O)}-'OLPr fo=115s=n§ =1,

36902 Theorem,
& structurs is coherent in probability if and only if its
path-numbers satisfy the inequalities (2.7.4.2) and {2.7.4.1),

and A~ 0, A, = 1,

Proof: siace Pr {¢ =1, 8=k } - .t\.kpk(lavp)n*k and
Pr {d = k} (E) pk'l—p)n"k , we have

Prof8 -3 4 8=kf=A /], k=01.00n

for any struccure, and our thecrem follows immediately,

3,5,3 Gorollary
If a structure is coherent. then it is ccherent in probability.
‘his follows from 3.5.2 ard 2.7.4. The converse statement

is not true; as shown by the exanple of 2.7.:,l. The structure

of order & described there setisfies {2.7.4,2) hence is

coherent in probability, but is not even semi-coherent.

3.5.4, Theorem,
If ¢ is coherent in probability then its reliability

function h(p} 1is non-decreasing for 0<p<1l .,




=28
Proof: from (3.,2.1) we have
nl 3. n-j-1
(3.5.4.1) h'(p) = > _ [{j+1) A, ., = (n~j)A,lp(1-p)
=0 5+ 3
and by 3.5.2 and (2.7,4.1) we obtain h'(p) >0 .

3.6, Reliability functions of semi~coherent and :oherent structures.
306;1o Theorem.
If ¢ is a semi-coherent structure then either h¢ =0
or h¢ =1 . or h¢ =p , or h¢ € 3f— ;
Pruof: to use induction on the order of § , we first
considerr n=l, The three possible structures § 1 Fq9Bo of
order 1 1listed in 2.7.3 have the reliability finctions
Oyps 1y respectively. VWe 1ow ussume our statemeit to be true
for order n , and consider a semi-coherent structure ¢ of

order n+l, According to 2.7.2 we have

306lu3) ¢(Xy »)OO'ranpxn+1) Kixlgoao X )

X
n+i n

4
- 'l"anu)U(Xl”°“ s Ky

with A and p  semi-coherent of order n and
(X qoaixn) > u(Xxgoua,Xn) for all (X1 ooo\xn) . From
(3.2.2) we have

h¢(p) = p h,(p) + {1-p) hu(p) o

IE MEypseeesX,) = W%, o0 X, for all (X, ,...,X;) then
h@fp) =h,(p) for O < p<1t and our statement is true by the
assumption of induction. If h(Xlg.gqpxn) > u(Xllono,Xn) for
some value of (Xlﬁuochp) then hk(p) > hu{p) for. 0<p<1
and h@ £ GK. according to 3.3.3.
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326020 Corollary.

I1f ® is a coherent structure then either
h¢(p) =p or h¢ B_ir i

This follows immediately from 3.6,1 by observing that for ¢
coherent h(0}) = O and hf(l) = 1 hence h is neither identically

0 nor identically 1.

3.6,3. Theorem.

If ¢ is a coherent structure, then hy & 'gyo if and

only if A, = 0 and Aqu“ «n
Proof: since for © coharent A,70, A = L we have

n . .

> Aipahlqp)th - 1sp

o ey ® ~ 3
P 2 L)=A 17 (1-p)T7 7
1=¢ 5 =

n o .
Sy pd=t(2.py0ed

=1 J

» s

et _ A
>I - At ep® *
17y ; '
amd
A
Lim o ip) BT A
=g h 1 Ao
{3.6.,3.1)
1im g ip) = -
h a n = A ¢
X { - -
P el Ay o

For h¢ € }? the function ch(p) is strictly increasing and it
agsumes the value 1 in O < p <1 if and only if

lim Gh(p < 1 and lim Jh(p) > 1 which together with (3,6,3.1)

p— < p -




shows that A1 = Q0 , Anul AN,

3.6.4. Inequalities for h{p) in terms of length and width.
Let zf and w denote the length and the width of a structure
® , as defined in 2.5. Then Ai =0 for i = 0,l,..., /- 1,

E

and Ai =0 for i = n-w+l ,..,n;, so that the rsliability function

h of @ can be written

(3.6.4.1; hip) = St 4 Sepy?i oy = Lip.pyn=i
eQc% ol P o ip =P = Py 1 p _‘1 pi o
%7 i=0 .

This immediately yields the inequalities

‘ (4 n-d , E? =,
(3.6.4.2) Ap (iop)" " g hip) 1 - A PP (1ep)Y

which show that for p-—=0 the fimetion hi{p) tends tc O
not faster than p£ ;. that 1s not faster than in the case of
components in series; and for p->1%1 it tends to L not faster
than 1 - (1-p)¥ . that is not faster than in the case of w
parallel components,

Inecualities f3.6.4.1) hold without any assumptions on ¢ .
If ¢ is coherent, we have inequalities (2.7.4.2) from which

one obtains

n
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1 ‘2)
and n
A:’ﬁ . gi) A* £ - 01
i "")" (n) n=w or A Woldgooo; =W o
w

From these inequalities and {3,6.4.1) follow the bounds for h(p)

s

' Ay n Al n-w :
(3:.6.4.3) £ - (Mt (1-p)™ ! < h(p) < 1 - —B=M S gn)pi(lgp)nsx
() i=tL () i=o




shows that A, =0 ; A ‘n .

3.6.4, Inequalities for h{(p) 1in terms of length and width.
Let zf and w denote the length and the width of a structure
0 , as defined in 2.5, Then A; » O for 1 = Oj1,..., £~ 1,
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and A1 =0 for 1 = now+l ...,n, So that the r<liability function
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which show that for p-—»C the function hip) tends te¢ O
not faster than pl'» that ig not faster than in the case of
components in series: and Tor p—>1 it tends to 1 not faster
than 1 - (1-p)¥ ., that is not faster than in the case of w
parallel components,

Inecualities (3.6,4.1) hold without any assumptions on ®
If 9 1is coherent, we have inequalities (2.7.4.2) from which

one obtains
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3.6.5. Qualitative remarks.

In 3.2.4 we described some properties of reliability functions
which appeared desirable for practical structures. The preceding
theorems tell us what kind of structures have these properties:

If ¢ 1is coherent then h¢ has properties a) and b) of 3.2.4
faccording to 3.6.2). Furthernore, if ¢ is coherent then the
conditions on path-numbers A, = 0, A _, = n characterize it as
havipg a‘reliability funetion h¢ of class o °? hence

S-shabé& and lending itself to the process of iterated compositions.

The class of coherent structures is very large. It contains
among others the two-terminal networks whose reliability has been
studied by Moore and Shannon in their fundamental paper [1] and

all %k out of n structures.




(1]

(2]

[3]
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